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PRACTICAL ASPECTS IN MOVING LOAD IDENTIFICATION

X. Q. Zhu and S. S. Law

Civil and Structural Engineering Department, Hong Kong Polytechnic University, Hung Hom,
Hong Kong, People’s Republic of China. E-mail: cesslaw@polyu.edu.hk

(Received 12 October 2001, and in final form 27 February 2002)

Several methods have been developed in recent years to identify moving loads on top of a
continuous beam using measured vibration responses. The methods can identify the forces
with some accuracy, but they have not been tested under field measurement conditions with
a bridge–vehicle system. This paper discusses the weaknesses and merits of two methods
when applied to a single-span bridge deck. The influence, on the moving load identification,
of practical aspects such as measurement noise, sampling frequency, a small number of
measured response modes, a small number of measuring points, road surface roughness
and non-uniform velocity or braking of vehicle is studied in simulations and experiment.
Results show that finite element approach with orthogonal function approximation of the
responses give more accurate results, in general, than the exact solution approach for all the
studies presented in this paper. The road surface roughness and a large variation in the
speed are identified as the two main obstacles leading to erroneous results.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Information of vehicular load on a bridge deck is essential to bridge design as it constitutes
the live load component in the bridge design code. Traditionally, the vehicular load was
either measured directly from an instrumented vehicle [1, 2] or computed from models of
the bridge deck and the vehicle [3–5]. It would be very expensive and the results obtained
are subjected to bias in the first approach, while the second approach is subjected to
modelling errors. Systems have been developed for weigh-in-motion of the vehicles [6, 7],
but they all measured only the static axle loads. A technique to estimate the vehicular
loads from the vibration responses of the bridge deck is required such that the different
parameters of the bridge and vehicle system are accounted for in the measured responses,
and the cost involved would be much less than that by direct measurement.

In the last few years, several methods have been presented by the authors on moving
force identification. These methods can be categorized into two groups. One group is
based on the exact solution and system identification theory, such as the time domain
method (TDM, [8]) and the frequency-time domain method (FTDM, [9]). The bridge deck
is modelled as a simply supported beam with viscous damping, and the vehicle/bridge
interaction force is modelled as one-point or two-point loads with fixed spacing, moving at
constant speed. The correlation of the measured and reconstructed responses is a robust
scoring function for evaluating the identified results.

The results obtained from the above methods are noise sensitive and they exhibit large
fluctuations at the beginning and at the end of the time histories. These moments
correspond to the switching of free vibration state of the structure to the forced vibration
state, and vice versa, and the solutions are ill conditioned. Law et al. [10] introduced a
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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regularization method in the ill-conditioned problem to provide bounds to the
identified forces in this group of methods. The results obtained are greatly improved
over those without regularization with acceptable errors from using different combina-
tions of measured responses. However, it is difficult to use these methods to
identify vehicular loads with multiple axles or vehicles on multi-span continuous bridge
due to the long computational time and large computer capacity. Most of the
computational time is spent on the computation of the time-varying system matrices.
Therefore, another TDM based on regularization technique is developed [11] which gives
exact solutions to the forces with improved formulation over existing methods for a more
efficient computation.

Another group of methods is based on finite element formulation, such as the
interpretive method ITM-I, [12] ITM-II, [13], and the optimal state estimation approach
[14]. ITM-I reconstructs the dynamic wheel loads from the bridge strains. The bridge deck
is modelled as an assembly of lumped masses interconnected by massless elastic beam
elements, not necessarily of the same length. The measured or total responses are caused
by the inertial or D’Alembert’s forces and the damping forces. ITM-II uses Euler’s
equation for beams to model the bridge deck in the interpretation of dynamic loads
crossing the deck. The optimal state estimation approach uses the dynamic programming
technique to provide bounds to the identified forces in solving the ill-conditioned problem
in the time domain using different combinations of measured responses in both simulation
and laboratory studies. The computational time of ITM [15] is not long compared with
TDM and FTDM, but the identification accuracy is much lower. Large errors in the
identified results are induced by the direct derivation of the bridge modal responses in the
ITM. A general method based on the finite element formulation was later developed [16] in
which, a generalized orthogonal function approximation is proposed to obtain the
derivatives of the bridge modal responses. The moving loads are identified using least-
squares method with regularization in the time domain.

All the above methods are able to identify moving forces with some accuracy. But the
effectiveness and accuracy of these methods have not been studied and compared
particularly on aspects related to application with field measurement, such as
measurement noise, sampling frequency, a small number of sensors, small number of
measured response modes, road surface roughness and non-uniform velocity or braking of
vehicle. Their performances need to be quantified before their application to real
problems. Methods from the two groups [11, 16] are studied with numerical examples and
by laboratory work in this paper. Results obtained indicate that the finite element method
is in general, better than the exact solution method in the types of problem studied. The
road surface roughness and a large variation in the speed are identified as the two main
obstacles leading to erroneous results.

2. DYNAMIC BEHAVIOUR OF STRUCTURE

The bridge–vehicle system is modelled as a continuous beam subject to a system of
moving forces PlðtÞ (l ¼ 1; 2; . . .Np) as shown in Figure 1. The forces are assumed to be
moving as a group at a prescribed velocity vðtÞ; along the axial direction of the beam from
left to right. The beam is assumed to be an Euler–Bernoulli beam. The equation of motion
can be written as

rA
@2wðx; tÞ

@t2
þ C

@wðx; tÞ
@t

þ EI
@4wðx; tÞ

@x4
¼

XNp

l¼1

PlðtÞdðx � #xxlðtÞÞ; ð1Þ



Figure 1. A continuous beam subject to moving loads.
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where L is the total length of the beam, A is the cross-sectional area, E is Young’s
modulus, I is the moment of inertia of the beam cross-section, r; C and wðx; tÞ are the
mass per unit length, the damping and the displacement function of the beam, respectively,
#xxlðtÞ is the location of moving force PlðtÞ at time t; dðtÞ is the Dirac delta function and Np

is the number of forces. The transverse displacement wðx; tÞ in modal co-ordinates is
expressed as

wðx; tÞ ¼
X1
i¼1

fiðxÞqiðtÞ; ð2Þ

where fiðxÞ is the mode shape function of the ith mode, which is determined from the
eigenvalue and eigenfunction analysis proposed by Hayashikawa and Watanabe [17]; qiðtÞ
is the ith modal amplitude. Substituting equation (2) into equation (1), and multiplying by
fiðxÞ; integrating with respect to x between 0 and L; and applying the orthogonality
conditions, we obtain

d2qiðtÞ
dt2

þ 2xioi
dqiðtÞ
dt

þ o2
i qiðtÞ ¼

1

Mi

XNp

l¼1

PlðtÞfið #xxlðtÞÞ; ð3Þ

where oi; xi;Mi are, respectively, the modal frequency, the damping ratio and the modal
mass of the ith mode, and

Mi ¼
Z L

0

rAf2
i ðxÞ dx: ð4Þ

The displacement of the beam at point x and at time t can be found from equations (2)
and (3):

wðx; tÞ ¼
X1
i¼1

fiðxÞ
Mi

Z t

0

hiðt � tÞ
XNp

l¼1

PlðtÞfið #xxlðtÞÞ dt; ð5Þ

where

hiðtÞ ¼
1

o0
i

e�xioi t sino0
it; o0

i ¼ oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2i

q
: ð6Þ
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3. MOVING FORCE IDENTIFICATION

The two moving load identification methods are briefly described below to provide more
background information to engineers to get familiar with the subsequent studies. Dynamic
strain measurements will be used in the moving forces identification.

3.1. BASED ON EXACT SOLUTION METHOD (ESM) [11]

The strain in the beam at point x and at time t can be written as

eðx; tÞ ¼ �zt

@2wðx; tÞ
@x2

; ð7Þ

where zt is the distance between the under surface and the neutral surface of the beam.
Substituting equation (5) into equation (7), and by rewriting in the discrete form one

obtains

eðxs;mÞ ¼ �
XN

i¼1

ztf
00
i ðxsÞDt

Mi

Xm

j¼0

hiðm � jÞ
XNp

l¼1

PlðjÞfið #xxlðjÞÞ

ðm ¼ 0; 1; 2; . . . ;Nt; s ¼ 1; 2; . . . ;NsÞ; ð8Þ

where Dt is the time interval, N is the number of vibration modes, Nt is the number of
data points, xs is the location of the measuring point, Ns is the number of measuring
points

hiðjÞ ¼
1

o0
i

e�xioi jDt sino0
i jDt: ð9Þ

Equation (8) can be rewritten in the matrix form as

BP ¼ e; ð10Þ

where e is ðNt *NsÞ � 1 matrix, B is ðNt *NsÞ � ðNt*NpÞ matrix, P is ðNt*NpÞ � 1
matrix,

e ¼ feðx1; 1Þ; eðx2; 1Þ; . . . eðxNs
; 1Þ; eðx1; 2Þ; . . . eðxNs

;NtÞgT;
P ¼ fp1ð0Þ; p2ð0Þ; . . . ; pNp

ð0Þ; p1ð1Þ; . . . ; pNp
ðNt � 1ÞgT: ð11Þ

When the measured data are more than the number of unknown forces, equation (10) can be
solved using the least-squares method. However, the solution would involve the computation
of the inverse of matrix B which would be very inefficient when the measured data is large
[8, 9]. Matrix B can be split into smaller submatrices to improve the computation efficiency as
follows:

B ¼

B10 0 � � � 0

B20 B21 � � � 0

..

. ..
. ..

. ..
.

BNt0 BNt1 � � � BNtNt�1

2
666664

3
777775

ðNs�NtÞ�ðNp�NtÞ

; Bmj ¼

b11 b12 � � � b1Np

b21 b22 � � � b2Np

� � � � � � ..
.

� � �
bNs1 bNs2 � � � bNsNp

2
666664

3
777775

Ns�Np

;

bsl ¼ ztDt
XN

i¼1

f00
i ðxsÞ
Mi

hiðm � jÞfið #xxlðjÞÞ

ðm ¼ 1; 2; 3; . . . ;Nt; j ¼ 0; 1; 2; . . . ;Nt � 1; s ¼ 1; 2; . . . ;Ns; l ¼ 1; 2; . . . ;NpÞ: ð12Þ
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3.2. BASED ON FINITE ELEMENT FORMULATION (FEM) [16]

The same assumptions of forces moving on top of a continuous beam as discussed
above are studied. Substitute equation (2) into equation (7) and assuming there are N

modes in the responses, we have

eðx; tÞ ¼ uQ; ð13Þ

where

u ¼ �fztf
00
1ðxÞ; ztf

00
2ðxÞ; � � � ; ztf

00
NðxÞg; Q ¼ fq1ðtÞ; q2ðtÞ; . . . ; qNðtÞgT:

and f00
i ðxÞ is the second derivative of fiðxÞ:

The strain can be approximated by a generalized orthogonal function TðtÞ as

eðx; tÞ ¼
XNf

i¼1

TiðtÞCiðxÞ; ð14Þ

where fTiðtÞ; i ¼ 1; 2; . . . ;Nf g is the generalized orthogonal function [16] and fCiðxÞ; i ¼
1; 2; . . . ;Nf g is the vector of coefficients in the expansion expression. The strains at the Ns

measuring points can be expressed as

e ¼ C*T ð15Þ

where

T ¼ fT0ðtÞ;T1ðtÞ; � � � ;TNf
ðtÞgT;

e ¼ feðx1; tÞ; eðx2; tÞ; � � � ; eðxNs
; tÞgT;

C ¼

C10ðx1Þ C11ðx1Þ � � � C1Nf
ðx1Þ

C20ðx2Þ C21ðx2Þ � � � C2Nf
ðx2Þ

..

. ..
. ..

. ..
.

CNs0ðxNs
Þ CNs1ðxNs

Þ � � � CNsNf
ðxNs

Þ

2
666664

3
777775

and fx1; x2; . . . ; xNs
g is the vector of the location of the strain measurements. By the least-

squares method, the coefficient matrix can be obtained as

C ¼ e*T
T
*ðT*T

TÞ�1: ð16Þ

Substitute equation (13) into equation (15),

Q ¼ ðUT
*UÞ�1

*UT
*C*T; ð17Þ

where

U ¼ �

ztf
00
1ðx1Þ ztf

00
2ðx1Þ � � � ztf

00
Nðx1Þ

ztf
00
1ðx2Þ ztf

00
2ðx2Þ � � � ztf

00
Nðx2Þ

..

. ..
. ..

. ..
.

ztf
00
1ðxNs

Þ ztf
00
2ðxNs

Þ � � � ztf
00
NðxNs

Þ

2
666664

3
777775

and it can be obtained from Zhu and Law [16].
The vector of generalized co-ordinates obtained from equation (17) can be substituted

into equation (3), and rewritten in matrix form to become

I*
.QQþ Cd *

’QQþ K*Q ¼ B*P ð18Þ
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or

U ¼ B*P; ð19Þ

where

Cd ¼ diagð2*xi *oiÞ;
K ¼ diagðo2

i Þ;

B ¼

f1ð #xx1ðtÞÞ=M1 f1ð #xx2ðtÞÞ=M1 � � � f1ð #xxNp
ðtÞÞ=M1

f2ð #xx1ðtÞÞ=M2 f2ð #xx2ðtÞÞ=M2 � � � f2ð #xxNp
ðtÞÞ=M2

..

. ..
. ..

. ..
.

fNð #xx1ðtÞÞ=MN fNð #xx2ðtÞÞ=MN � � � fNð #xxNp
ðtÞÞ=MN

2
666664

3
777775
:

The required .QQ and ’QQ can be obtained by directly differentiating equation (17) to obtain

.QQ ¼ ðUT
*UÞ�1

*UT
*C*

.TT;

’QQ ¼ ðUT
*UÞ�1

*UT
*C*

’TT:

It is seen from the formulation of the method that when the modal parameters of the
structure are replaced by those from a finite element model, this method could be applied
to complex real structure of varying geometry and mass distribution and with different
boundary conditions.

3.3. REGULARIZATION

The moving forces obtained from equations (10) and (19) using a straightforward least-
squares solution would be unbound. A regularization technique can be used to solve the
ill-posed problem in the form of minimizing the function

JðP; lÞ ¼ jjB*P� ejj2 þ ljjPjj2 or JðP; lÞ ¼ jjB*P� U jj2 þ ljjPjj2; ð20Þ

where l is the non-negative regularization parameter. The generalized cross validation [18]
and L-curve method [19] can be employed to determine the optimal regularization
parameter.

4. SIMULATION STUDIES

Two examples are used to compare the weaknesses and merits of these methods.

4.1. EXAMPLE 1: IDENTIFICATION OF TWOMOVING LOADS ONA SINGLE-SPAN BEAM

A single-span simply supported beam with two forces p1ðtÞ and p2ðtÞ moving on top is
studied

p1ðtÞ ¼ 20000½1þ 0�1 sinð10ptÞ þ 0�05 sinð40ptÞ�N;

p2ðtÞ ¼ 20000½1� 0�01 sinð10ptÞ þ 0�05 sinð50ptÞ�N: ð21Þ

The parameters of the beam are: EI ¼ 2�5� 1010 Nm2; rA ¼ 5000 kg=m; L ¼ 30 m:
The distance between the two moving forces is 4:27 m: The first six natural frequencies of
the beam are 3�90, 15�61, 35�13, 62�45, 97�58 and 140�51Hz. White noise is added to the
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calculated responses of the beam to simulate the polluted measurements with

e ¼ ecalculated þ EP*Noise *sðecalculatedÞ; ð22Þ
where e and ecalculated are the polluted and the original strains respectively. Ep is the noise
level. Noise is a standard normal distribution vector with zero mean value and unit
standard deviation and sðecalculatedÞ is the standard deviation of the original strains.

The errors in the identified forces are calculated as

Error ¼ jjPidentified � PTruejj
jjPTruejj

� 100%: ð23Þ

The first six modes are used in the simulation. The time interval between adjacent data
points is 0�002 s. Six measuring points are evenly distributed on the beam at 1=7L spacing.
The moving speed is 30 m=s; and 20 terms are used in the orthogonal function. These
parameters are used in the following studies unless specified otherwise.

4.2. STUDY 1: EFFECT OF NOISE LEVEL

Monte Carlo method is used to simulate the noise in the responses, and noise levels are
from 1 to 10%. Figure 2 shows the mean and standard deviation of the errors in the
identified moving loads using the method based on ESM, and Figure 3 shows those from
using the method based on FEM.

The errors from using ESM vary approximately linearly with the noise levels in the
responses. The standard deviation in the errors is largest with 6% noise in the responses.
Figure 2. The mean (circles) and standard deviation (error bars) of the errors in the identified moving loads
using ESM: (a) errors in the identified first moving load and (b) errors in the identified second moving load.



Figure 3. The mean (circles) and standard deviation (error bars) of the errors in the identified moving loads
using FEM: (a) errors in the identified first moving load and (b) errors in the identified second moving load.

X. Q. ZHU AND S. S. LAW130
The errors from using FEM exhibit little change with the noise level in the responses. This
is because the orthogonal function approximation in the identification reduces the effect of
noise by its own filter. When the noise level in the responses increases, the standard
deviation in the errors also increases. This indicates that the ESM could give very accurate
results at low noise level, but it is greatly influenced by the noise effect. While the
orthogonal function approximation in the FEM reduces consistently the noise effect to
give accurate results in all cases studied.

4.3. STUDY 2: EFFECT OF MODE TRUNCATION

The first 2, 3, 4, 5 and 6 modes are used in the identification in turn. Figures 4 and 5
show the errors in the identified results with different number of modes using ESM and
FEM, respectively, and Figure 6 shows the errors in the identified results with different
number of terms in the orthogonal function in FEM when six modes are included in the
responses.

The errors derived from ESM increase roughly proportional to the noise level in the
responses and with similar gradient of change for different number of modes. The errors
from using FEM exhibit little change with noise. This shows that the errors in the



Figure 4. Errors in the identified moving loads using ESM: (a) error in the identified first moving load and
(b) errors in the identified second moving load.

Figure 5. Errors in the identified moving loads using FEM: (a) error in the identified first moving load and
(b) error in the identified second moving load.
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Figure 6. Errors in the identified moving loads using different number of terms in the orthogonal function:
(a) error in the identified first moving load and (b) error in the identified second moving load.
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identified results using FEM are mainly governed by the efficiency of the filtering effect in
the orthogonal function approximation. FEM is, in general, much better than ESM in
identification.

The errors shown in Figures 4 and 5 increase by a great extent when the number of
modes in the identification is less than three. This is because the first three natural
frequencies of the beam cover the frequency range of the moving loads, and the responses
contain most of the effect from the moving loads. The errors in the identified forces in
Figure 6 remain relatively constant for different noise levels when the number of terms in
the orthogonal function in FEM is less than 20. And the noise level would have a negative
effect on the errors when there are more terms in the orthogonal function. This is because
the frequency range in the orthogonal function increases with increasing number of terms,
and the high-frequency components in the noise would be retained in the calculation
affecting the final results.

4.4. STUDY 3: EFFECT OF NUMBEROF MEASURING POINTS

The number of measuring points is selected as 6, 7, 8, 9, 10 in turn. The measuring
points are evenly distributed on the beam. Figures 7 and 8 show the errors in the identified
results with different number of measuring points as the noise level in the responses is
increased. The number of measuring points is shown to be not related to the accuracy in



Figure 7. Errors in the identified moving loads using ESM with different number of measuring points:
(a) error in the identified first moving load and (b) error in the identified second moving load.
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the identified results. It should be noted that the number of measuring points used is larger
than the number of the modes in the identification.

4.5. STUDY 4: EFFECT OF SAMPLING FREQUENCY

The responses are calculated with 0�001 s time interval between data points, and they are
resampled with time intervals of 0�002 and 0�003 s in turn. Figures 9 and 10 show the errors
in the identified results with different sampling frequencies and noise levels using these two
methods.

The errors in the identified results for ESM are largest when the noise level is above 2%
and the sampling time interval is 0�001 s. This is again due to the inclusion of more high-
frequency components of noise in the calculation with a higher sampling frequency. The
errors from using FEM are smaller than those from using ESM and with less variation.

4.6. EXAMPLE 2: SINGLE-SPAN BRIDGE SUBJECT TOA 4-D.O.F.S MOVING VEHICLE

The bridge–vehicle system shown in Figure 11 is represented by a simply supported
beam subject to a moving vehicle with two axles and four degrees-of-freedom. The
parameters of the system are listed as follows:

Bridge: L ¼ 30m, EI ¼ 2�5� 1010 Nm2, rA ¼ 5�0� 103 kg=m; x ¼ 0�02 for all modes.
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The characteristics of the vehicle model are adopted from [20]:

Mv ¼ 17 735 kg; m1 ¼ 1500 kg; m2 ¼ 1000 kg; S ¼ 4�27 m;

a1 ¼ 0�519; a2 ¼ 0�481; H ¼ 1�80 m; ks1 ¼ 2�47� 106 N=m; ks2 ¼ 4�23� 106 N=m;

kt1 ¼ 3�74� 106 N=m; kt2 ¼ 4�60� 106 N=m; cs1 ¼ 3�00� 104 N=m s;

cs2 ¼ 4�00� 104 N=m s; ct1 ¼ 3�90� 103 N=m s; ct2 ¼ 4�30� 103 N=m s;

Iv ¼ 1�47� 105 kg m2:

The first six natural frequencies of the bridge deck are 3�90, 15�61, 35�13, 62�45, 97�58 and
140�51Hz. The natural frequencies of the vehicle are 10�27, 14�44, 65�05 and 94�90Hz. The
first six bridge modes are used in the calculation of the interaction forces by the method
developed by Henchi et al. [5]. The weight ratio between the vehicle and bridge is 0�135.

4.7. STUDY 5: EFFECT OF ROAD SURFACE ROUGHNESS ANDMOVING SPEED

Based on ISO-8606 [21] specification, the road surface roughness in the time domain is
simulated by applying the inverse fast fourier transformation [5]. Tables 1 and 2 show the
errors in the identified moving loads with different moving speeds and road surface
roughness using these two methods. Figure 12 shows the identified moving loads with
Class B road surface roughness and 5% noise level in the responses.

The identified time histories are shown varying about the true time histories in
Figure 12. These two methods can be used to identify the bridge–vehicle interaction forces
from the bridge responses, and acceptable results can be obtained with different road
surface roughness and moving speeds in the identification. The moving speed has little
effect on the identified moving loads from these two methods.

In the FEM, the errors in the identified results increase as the road surface roughness
increases, but they change slightly for different noise levels. This is because the high-
frequency components induced by the road surface roughness are reduced by the filtering
with the orthogonal function approximation. In the ESM, the errors in the identified
results change slightly as the road surface condition deteriorates. However, they are also
sensitive to the noise level in the responses. It may be concluded that the ESM is good for
low noise level and FEM is good for high noise level in the responses.

4.8. STUDY 6: IDENTIFICATIONOFMOVINGLOADS ON BRIDGEDECKWITH VARYING SPEEDS

In practice, a vehicle moves on top of the bridge deck with varying speeds, and we shall
discuss the moving load identification when the instantaneous varying speed is known in
this section. The responses are calculated by the method by Zhu and Law [22]. Tables 3
and 4 show the errors in the identified results with different noise levels in the responses
using these two methods. Figure 13 shows the identified moving loads when the vehicle
starts braking at the entry of the bridge deck with an acceleration of �1m/s2 and 5% noise
in the responses using these two methods. Figure 14 shows the identified results when the
vehicle starts braking at 1=3L with an acceleration of �3m/s2 and 5% noise in the
responses. The road roughness is Class B in both cases. The results are shown under the
heading ‘‘instantaneous’’ in the tables.

Since the instantaneous speed of the forces is known, these two methods can be used to
identify the moving loads from measured strains, and acceptable results can be obtained
from both methods at low noise level. Those from using FEM are consistently much better



Figure 8. Errors in the identified moving loads using FEM with different number of measuring points:
(a) error in the identified moving load and (b) errors in the identified second moving load.
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than those from using ESM for different noise levels in the study due to its own filtering
effect.

4.9. STUDY 7: IDENTIFICATION WITH INCOMPLETE VEHICLE SPEED INFORMATION

In practice, the axle spacing, the number of axles of the vehicle, and the time that the
vehicle enters or exits the bridge can be measured directly by axle sensors. But the position
of braking of vehicle and its acceleration are difficult to measure. The errors induced from
identifying using an average speed should be studied. Figure 15 shows the identified results
when the vehicle starts braking at the entry with an acceleration of �1m/s2 using these two
methods. An average speed of 29�39m/s is used. Figure 16 shows the identified results
when the vehicle starts braking at 1=3L and the acceleration is �3m/s2. An average speed
of 29�04m/s is used. The road roughness is Class B in both cases. Tables 3 and 4 show the
errors in the identified results with different noise levels in the responses. The results are
shown under the heading ‘‘average’’ in the tables.

It is seen that the identified results from both methods using the average speed are
acceptable when the acceleration is �1m/s2. But for the case with �3m/s2 acceleration, a
large increase in the error for the second axle load is observed. This shows that the moving
loads can be identified from strains using the average speed when the acceleration is not
very large.

In the figures, the first moving load is seen overestimated and the second moving load is
underestimated in both the methods. This is because the moving loads are estimated by



Figure 9. Errors in the identified moving loads with different sampling frequencies using ESM: (a) errors in
the identified first moving load and (b) errors in the identified first moving load.
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minimizing the error between the measured and reconstructed responses from the
identified moving loads. The location of the resultant load using average speed lags behind
that of the true resultant load and this difference is largest at mid-span of the bridge deck.
The optimization, however, yields a location of the resultant load which is close and
behind the true load. This leads to an overestimated first axle load and an underestimated
second axle load. This behaviour is opposite in the case of having acceleration of the
vehicle.

5. EXPERIMENTAL STUDIES

The experimental set-up is shown in Figure 17. The main beam located in the laboratory
is 3678mm long with a 100� 25mm2 uniform cross-section. There is a leading beam for
accelerating the vehicle and a tailing beam to accept the vehicle when it comes out of the
main span. The beams are simply supported and the ends of the beams are placed close
together leaving only a very narrow gap of approximately 1mm. This is necessary in order
not to have a large impulsive force on the beam when the wheels cross the gap. A U-
shaped aluminium section is glued to the upper surface of the beams as a direction guide
for the car. The model car is pulled along the guide by a string wound around the drive
wheel of an electric motor. The model car has two axles at a spacing of 0�557m and it runs
on four steel wheels with rubber band on the outside. The mass of the whole car is 16�6 kg



Figure 10. Errors in the identified results with different sampling frequencies using FEM: (a) errors in the first
identified moving load and (b) errors in the second identified moving load.

Figure 11. Bridge–vehicle system model.
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with the front axle load and the rear axle load weighing 9�8 and 6�8 kg respectively. The
transverse spacing between wheels is 0�08m. Thirteen photoelectric sensors are mounted
on the beams at approximately equal spacing to measure and monitor the moving speed of
the car. Seven strain gauges are evenly distributed on the beam at 1=8L: A TEAC
14-channels magnetic tape recorder and an 8-channel dynamic testing and analysis system



Table 1

Errors in the identified moving loads using FEM with different moving speeds and road

surface roughness (in per cent)

Speed (m/s) Roughness 1% noise 5% noise 10% noise

Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

No 2�988 3�909 3�128 4�067 3�458 4�444
20 A 3�412 3�416 3�562 3�530 3�890 3�844

B 4�062 4�884 4�158 4�909 4�424 5�031
C 11�312 15�747 11�316 15�742 11�391 15�807
D 21�029 28�115 21�046 28�163 21�108 28�247

30 No 2�290 2�457 2�404 2�523 2�806 2�822
A 3�126 3�108 3�182 3�181 3�430 3�446
B 4�043 4�056 4�046 4�118 4�245 4�326
C 11�691 13�279 11�654 13�344 11�676 13�487
D 21�773 24�674 21�746 24�714 21�769 24�796

40 No 2�827 3�279 3�264 3�352 3�983 3�737
A 3�203 4�104 3�509 4�054 4�124 4�207
B 3�879 4�971 4�111 4�908 4�612 5�005
C 10�714 13�110 10�770 13�022 10�932 13�059
D 18�798 24�385 18�756 24�319 18�780 24�324

Error 1}error in the first axle load; Error 2}error in the second axle load.

Table 2

Errors in the identified moving loads using ESM with different moving speeds and road

surface roughness (in per cent)

Speed (m/s) Roughness 1% noise 5% noise 10% noise

Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

20 No 1�997 2�235 8�631 9�009 14�206 14�463
A 2�009 2�250 8�591 9�020 13�992 14�416
B 2�026 2�269 8�610 9�072 13�904 14�434
C 2�379 2�631 9�842 10�539 14�262 15�633
D 3�199 3�557 13�263 14�240 18�527 19�098

30 No 2�091 2�246 9�238 9�619 14�435 14�843
A 2�081 2�210 9�163 9�479 14�255 14�722
B 2�083 2�193 9�150 9�419 14�169 14�696
C 2�290 2�227 9�886 9�697 14�290 15�421
D 2�858 2�648 12�247 11�623 18�523 17�901

40 No 2�008 2�349 8�843 9�534 14�623 15�466
A 2�052 2�395 8�960 9�737 14�544 15�601
B 2�091 2�435 9�095 9�919 14�544 15�752
C 2�622 2�979 11�190 12�457 15�683 18�501
D 3�372 4�031 14�336 17�443 19�652 22�532

Error 1}error in the first axle load; Error 2}error in the second axle load.
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Figure 12. Identified forces on Class B road with 5% noise (}}, true forces; – – –, using FEM; � � � � � � using
ESM).

Table 3

Errors (in per cent) in the moving loads identified with varying speeds using FEM

Noise level (%) �1m/s2 (braking at entry) �3m/s2 (braking at 1=3L)

Instantaneous Average Instantaneous Average

Error 1 Error 2 Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

1 4�129 5�370 5�081 7�020 3�555 5�568 6�986 14�848
2 4�094 5�307 5�064 6�968 3�529 5�568 6�988 14�822
3 4�065 5�246 5�049 6�934 3�520 5�575 6�993 14�798
4 4�051 5�203 5�038 6�985 3�516 5�588 7�000 14�776
5 4�045 5�214 5�029 7�096 3�518 5�609 7�005 14�756
6 4�045 5�348 5�024 7�213 3�524 5�634 7�011 14�736
7 4�049 5�523 5�031 7�337 3�535 5�666 7�019 14�719
8 4�060 5�705 5�042 7�468 3�552 5�703 7�027 14�704
9 4�076 5�894 5�055 7�604 3�574 5�743 7�037 14�696

10 4�099 6�086 5�069 7�743 3�600 5�787 7�047 14�696

Error 1}error in the first axle load; Error 2}error in the second axle load.
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are used for data collection and analysis in the experiment. The sampling frequency is
2000Hz. The recorded length of each test sample lasts for 6 s. Braking force is applied with
a set of rubber bands placed transversely in front of the vehicle approximately at the level
of its centroid, and the braking force was tuned by adjusting the tension in the rubber
band.

The first three natural frequencies of the model car are 7�82, 9�77 and 11�72Hz
and those of the main beam are 3�67, 16�83 and 37�83Hz. The car was placed at
the right end of the leading beam, and the data acquisition system was set in the pre-trigger
state. The power for the motor was then turned on, and the car moved on the
top of the beam. The vibration signals were recorded. The zeroshift in the measured
signals was removed, and the signals were calibrated with their measured sensitivities. The
point in the signals when the front wheel of the car just got on the main beam was
identified.



Table 4

Errors (in per cent) in the moving loads identified with varying speeds using ESM

Noise level (%) �1m/s2 (braking at entry) �3m/s2 (braking at 1=3L)

Instantaneous Average Instantaneous Average

Error 1 Error 2 Error 1 Error 2 Error 1 Error 2 Error 1 Error 2

1 1�930 2�630 4�907 6�895 1�874 2�739 8�026 15�682
2 3�644 4�655 5�659 7�825 3�504 5�088 8�265 15�921
3 5�297 6�674 6�730 9�158 5�099 7�395 8�734 16�467
4 6�968 8�663 7�955 10�689 6�664 6�655 9�396 17�296
5 8�622 10�647 9�322 12�309 8�205 11�873 10�086 18�368
6 10�825 12�583 10�715 14�004 9�712 14�056 10�305 19�790
7 11�825 14�440 11�137 14�773 11�160 16�191 10�553 20�955
8 12�291 13�724 11�778 15�660 11�759 15�042 10�988 21�916
9 13�109 14�497 12�390 16�516 12�568 15�889 11�440 22�764

10 13�858 15�244 12�989 17�321 13�330 16�690 11�899 23�540

Error 1}error in the first axle load; Error 2}error in the second axle load.

Figure 13. Identified forces on instantaneous speed and braking at entry (}}, true forces; – – –, using FEM;
� � � � � � using ESM).
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5.1. IDENTIFICATION WITH CARTRAVELLINGAT UNIFORM SPEED

The first experiment is conducted with the vehicle moving approximately at 1�25m/s,
and the strains collected are resampled at 200Hz to include the first three vibration modes.
Figure 18 shows the identified results from strains at 1=4L; 1=2L and 3=4L with the first
three modes using both methods.

The mean values of the identified loads are close to and varying around the static loads
using these two methods. Results from using FEM are in general worse than those from
using ESM. This is because the noise level in the measurement is low, and the error of
identification from ESM is smaller than that from FEM when the number of vibration
mode used is small as observed from the simulation results in Figures 4 and 5.



Figure 14. Identified forces on instantaneous speed and braking at 1=3L (}}, true forces; – – –, using FEM;
� � � � � � using ESM).

Figure 15. Identified forces using average speed with braking at entry (}}, true forces; – – –, using FEM;
� � � � � � using ESM).
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5.2. IDENTIFICATION WITH BRAKING STARTS AT 0�878m

The parameters are the same as for the above experiment. The moving car starts braking
at 0�878m. The actual speed measured between adjacent pairs of photoelectric sensors is
shown in Table 5 with an average of 1�19m/s. The moving car accelerates before braking
and it crosses the beam completely with deceleration. Figure 19 shows the identified loads
from strains at 1=4L; 1=2L and 3=4L for the car moving at the true and the average speed
using ESM. The reconstructed strains at 5=8L are also compared with the measured strain.
The correlation coefficients between them are, respectively, 0�983 and 0�985, and the
optimal regularization parameters are, respectively, 8�040� 10�16 and 8�267� 10�16 for
the cases identified using true and average speeds. Figure 20 shows the identified results
from FEM using the same set of strains for the car moving at the true and average speed.



Figure 16. Identified forces using average speed with braking at 1=3L (}}, true forces; – – –, using FEM;
� � � � � � using ESM).

Figure 17. Diagrammatic drawing of the experimental set-up.
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Large fluctuations are found in the identified loads in Figures 19 and 20. This is due to
the pitching motion induced by the horizontal braking force. Impulsive interaction forces
generated from braking would also cause these fluctuations. The identified loads differ
slightly when the true or average speed is used. The second axle load identified from using



Figure 18. Identification from strains at 1=4L; 1=2L; 3=4L (}}, static forces; – – –, using ESM; � � � � � � using
FEM).

Table 5

Transient speed in experiment

Range of
distance (m)

0�0–
0�478

0�478–
0�878

0�878–
1�178

1�178–
1�478

1�478–
1�778

1�778–
2�078

2�078–
2�378

2�378–
2�678

2�678–
3�178

3�178–
3�678

Velocity
(m/s)

1�215 1�305 1�271 1�250 1�245 1�139 1�154 1�149 1�129 1�119
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average speed is underestimated and the first axle load is overestimated from both
methods. This observation is similar to those found in the simulation studies and is due to
the acceleration of the car. There is very small difference in the curves close to the ends of
the beam because the difference of the location of the resultant forces calculated from the
average speed and the instantaneous speed is very small.

6. CONCLUSIONS

Both the FEM and the ESM can be used to identify the moving loads or the bridge–
vehicle interaction forces from measured strains with road roughness and vehicle braking
on the bridge. The FEM gives consistently smaller error in the results for all noise levels,
while the accuracy of ESM is greatly affected by noise. This indicates the importance of
having pre-processing of the measured data to remove the measurement noise before the



Figure 19. Identification from strains using ESM when braking starts at 0�878m (}}, static loads; – – –,
results using varying speed; � � � � � � , results using average speed; – � – �, start braking position).

Figure 20. Identification from strains using FEM when braking starts at 0�878m (}}, static loads; – – –,
results using varying speed; � � � � � � , results using average speed; – � – �, start braking position).
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identification. The orthogonal function approximation of the measured strains is also
shown to be effective in filtering the high-frequency noise components in the responses.

From the parametric studies conducted, the speed of forces and the number of sensors
have no effect on the accuracy of results. The sampling frequency, the number of
measuring points and the number of modes included in the identification are conditional
to the accuracy. The sampling frequency should be higher than the frequency range in the
responses while the number of modes should cover the frequency range of the forces to be
identified. The number of measuring points should be larger than the number of modes
used in the identification. The road surface roughness Classes A, B and C have little effect
on the accuracy while Class C and D would cause large error in the identified results from
both methods. A small acceleration of �1m/s2 on an average of 30m/s2 does not have
large effect on the accuracy of identification, but a large acceleration of �3m/s2 would
cause large error in the second axle force. And the first axle load is overestimated while the
second axle load is underestimated with identification of decelerating forces using an
average speed and vice versa.

ACKNOWLEDGMENTS

The work described in this paper was supported by a grant from the Hong Kong
Polytechnic University Research Funding Project No. V653.

REFERENCES

1. R. Cantineni 1992 Swiss Federal Laboratories for Materials Testing and Research (EMPA)
Report No. 220, 240pp. Dynamic behavior of highway bridges under the passage of heavy
vehicles.

2. R. J. Heywood 1994 International Journal of Vehicle Design. Influence of truck suspensions on
the dynamic response of a short span bridge.

3. M. F. Green and D. Cebon 1997 Computers and Structures 62, 253–264. Dynamic interaction
between heavy vehicle and highway bridges.

4. Y. B. Yang and J. D. Yau 1997 Journal of Structural Engineering American Society of Civil
Engineers 123, 1512–1518. Vehicle-bridge interaction element for dynamic analysis.

5. K. Henchi, M. Fafard, M. Talbot and G. Dhatt 1998 Journal of Sound and Vibration 212,
663–683. An efficient algorithm for dynamic analysis of bridges under moving vehicles using a
coupled modal and physical components approach.

6. R. J. Peters 1984 Proceedings of the 12th ARRB Conference 12, 10–18. A system to obtain
vehicle axle weights.

7. T. J. Peters 1986 Proceedings of the 13th ARRB and 5th REAAA Combined Conference Part 6,
70–83. An unmanned and undetectable highway speed vehicle weighing system.

8. S. S. Law, T. H. T. Chan and Q. H. Zeng 1997 Journal of Sound and Vibration 201, 1–22.
Moving force identification: time domain method.

9. S. S. Law, T. H. T. Chan and Q. H. Zeng 1999 Journal of Dynamic Systems, Measurement and
Control American Society of Mechanical Engineers 121, 394–401. Moving force identification: a
frequency-time domain method.

10. S. S. Law, T. H. T. Chan, X. Q. Zhu and Q. H. Zeng 2001 Journal of Engineering Mechanics
American Society of Civil Engineers 127, 136–148. Regularization in moving force identification.

11. X. Q. Zhu and S. S. Law 2000 Journal of Sound and Vibration 236, 705–724. Identification of
vehicular axle loads from bridge dynamic responses.

12. C. O’Connor and T. H. T. Chan 1988 Journal of Structural Engineering American Society of
Civil Engineers 114, 1703–1723. Dynamic wheel loads from bridge strains.

13. T. H. T. Chan, S. S. Law, T. H. Yung and X. R. Yuan 1999 Journal of Sound and Vibration
219, 503–524. An interpretive method for moving force identification.

14. S. S. Law and Y. L. Fang 2001 Journal of Sound and Vibration 239, 233–254. Moving force
identification: Optimal state estimation approach.



X. Q. ZHU AND S. S. LAW146
15. T. H. T. Chan, Ling Yu and S. S. Law 2000 Journal of Sound and Vibration 235, 87–104.
Comparative studies on moving force identification from bridge strains in laboratory.

16. X. Q. Zhu and S. S. Law 2001a Journal Sound and Vibration 245, 329–345. Orthogonal function
in moving loads identification on a multi-span bridge.

17. T. Hayashikawa and N. Watanabe 1981 Journal of the Engineering Mechanics Division
American Society of Civil Engineers 107, 229–246. Dynamic behavior of continuous beams with
moving loads.

18. G. H. Golub, M. Heath and G. Wahba 1979. Technometrics 21, 215–223. Generalized cross-
validation as a method for choosing a good ridge parameter.

19. P. C. Hansen 1992. SIAM Review 34, 561–580. Analysis of discrete ill-posed problems by means
of the L-curve.

20. N. L. Mulcahy 1983 Earthquake Engineering and Structural Dynamics 11, 649–665. Bridge
response with tractor-trailer vehicle loading.

21. ISO8606: 1995(E) International Standards Organization. Mechanical vibration}road surface
profiles}reporting of measured data.

22. X. Q. Zhu and S. S. Law 2001b Journal of Sound and Vibration 240, 962–970. Precise time step
integration for the dynamic response of a continuous beam under moving loads.

APPENDIX A: NOTATION

r mass per unit length of beam
A cross-sectional area
E Young’s modulus of material
I second moment of inertia
L total length of beam
N number of modes or number of degree-of-freedom of a system
Ns number of measuring points
Nt number of data points
Np number of moving loads
Mi modal mass of the nth mode
Mv; Iv mass and inertia moment of the vehicle
PlðtÞ time varying concentrated load
S axle spacing
B coefficient matrix
P load vector
a1; a2 position parameters
c viscous damping of beam
hiðtÞ impulse response
ksi; csi stiffness and damping of the suspension system
kti; cti stiffness and damping of the tyres
m1;m2 mass of two tyres
qiðtÞ nth modal co-ordinate
vðtÞ travelling velocity of force
wðx; tÞ displacement function of beam
xs location of the measuring point
zt distance between the bottom surface and the neutral surface of beam
#xxlðtÞ location of moving load PlðtÞ at time t
dðtÞ the Dirac delta function
fiðxÞ mode shape of nth mode
l regularization parameter
xi;oi damping ratio and frequency of ith mode respectively
o0

i damped ith modal frequency
eðx; tÞ strain at location x and time t
e; .ww vector of strain
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